

Муниципальное бюджетное общеобразовательное учреждение городского округа Тольятти «Школа с углубленным изучением отдельных предметов № 41»

РАССМОТРЕНО на заседании МО учителей математики и информатики Протокол № 1 от 30.08.2023

Педагогическим советом Школы Протокол № 1 от 30.08.2023

ОТРИНИП

УТВЕРЖДЕНО Приказ № 116 от 31.08.2023 Заместитель директора МБУ «Школа № 41» Е.Г. Урбан

Рабочая программа учебного предмета «Информатика» 10 -11 класс (углубленный уровень)

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГОПРЕДМЕТА

ФГОС устанавливает требования к таким результатам освоения обучающимися основной образовательной программы среднего общего образования, как:

- личностные;
- метапредметные;
- предметные.

Личностные результаты

При изучении курса «Информатика» на углубленном уровне в соответствии с требованиями ФГОС формируются следующие личностные результаты.

1. Сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики.

Каждая учебная дисциплина формирует определенную составляющую научного мировоззрения. Информатика формирует представления учащихся о науках, развивающих информационную картину мира, вводит их в область информационной деятельности людей. Ученики узнают о месте, которое занимает информатика в современной системе наук, об информационной картине мира, о ее другими областями. Ученики связи научными получают представление о современном уровне и перспективах развития ИКТотрасли, в реализации которых в будущем они, возможно, смогут принять участие.

2. Сформированность навыков сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности.

Эффективным методом формирования данных качеств является учебно- проектная деятельность. Работа над проектом требует взаимодействия между учениками — исполнителями проекта, а также между учениками и учителем, формулирующим задание проектирования, контролирующим ход его выполнения, В принимающим результаты работы. завершение работы предусматривается процедура защиты проекта перед коллективом класса, которая также требует наличия коммуникативных навыков у детей.

3. Бережное, ответственное и компетентное отношение к физическому и психологическому здоровью как собственному, так и других людей, умение оказывать первую помощь.

Все большее время у современных детей занимает работа за компьютером (не только над учебными заданиями). Поэтому для сохранения здоровья очень важно знакомить учеников с правилами безопасной работы закомпьютером, с компьютерной эргономикой.

4. Готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности; осознанный выбор будущей профессии и возможностей реализации собственных жизненных планов.

Данное качество формируется в процессе развития навыков самостоятельной учебной учебно-исследовательской И работы учеников. Выполнение проектных заданий требует от ученика проявления самостоятельности в изучении нового материала, в поиске информации в различных источниках. Такая деятельность раскрывает перед учениками возможные перспективы в изучении предмета, в дальнейшей профориентации в этом направлении. В содержании многих разделов учебников рассказывается использовании информатики и ИКТ в различных профессиональных областях и перспективах их развития.

5. Осознанный выбор будущей профессии и возможностей реализации собственных жизненных планов; отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем.

Важное место в изучении информатики на углубленном уровне занимает знакомство учащихся с современными профессиями в ІТотрасли. В учебниках присутствуют описания раз- личных видов профессиональной деятельности, которые связываются в содержании курса с изучаемой темой. Кроме того, применяемая методика учебного проектирования приближена к методам производственной

Метапредметные результаты

При изучении курса «Информатика» на углубленном уровне в соответствии с требованиями ФГОС формируются следующие метапредметные результаты.

1. Умение самостоятельно определять цели и составлять планы; самостоятельно осуществлять, контролировать и корректировать учебную и внеучебную (включая внешкольную) деятельность; использовать все возможные ресурсы для достижения целей; выбирать успешные стратегии в различных ситуациях.

Данная компетенция формируется при изучении информатики в нескольких аспектах, таких как:

- учебно-проектная деятельность: планирование целей и процесса выполнения проекта и самоконтроль за результатами работы;
- изучение основ системологии: способствует формированию системного подхода к анализу объекта деятельности;
- алгоритмическая линия курса: алгоритм можно назвать планом достижения цели исходя из ограниченных ресурсов (исходных данных) и ограниченных возможностей исполнителя (системы команд исполнителя).
- 2. Умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции другого, эффективно разрешать конфликты.

Формированию данной компетенции способствуют следующие аспекты методической системы курса:

- формулировка многих вопросов и заданий к теоретическим разделам курса стимулирует к дискуссионной форме обсуждения и принятия согласованных решений;
- ряд проектных заданий предусматривает коллективное выполнение, требующее от учеников умения взаимодействовать; защита работы предполагает коллективное обсуждение ее результатов.
- 3. Владение навыками познавательной, учебно- исследовательской и проектной деятельности, навыками разрешения

проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания.

Большое место в методике углубленного изучения информатики занимает учебно-исследовательская и проектная деятельность. Предусматриваются проекты как для индивидуального, так и для коллективного исполнения. В частности, в рамках коллективного проекта ученик может быть как исполнителем, так и руководителем проекта. В методике учебно-проектной работы предусматриваются коллективные обсуждения с целью поиска методов выполнения проекта.

4. Готовность и способность к самостоятельной информационно- познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников.

Информационные технологии являются одной из самых динамичных предметных областей. Поэтому успешная учебная и производственная деятельность в этой области невозможна без способностей к самообучению, к активной познавательной деятельности.

Интернет является важнейшим современным источником информации, ресурсы которого постоянно расширяются. В процессе изучения информатики ученики осваивают эффективные методы получения информации через Интернет, ее отбора и систематизации.

5. Владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.

Формированию этой компетенции способствует методика индивидуального, дифференцированного подхода при распределении практических заданий, которые разделены на три уровня сложности: репродуктивный, продуктивный и творческий. Такое разделение станет для некоторых учеников стимулирующим фактором к переоценке и повышению уровня своих знаний и умений. Дифференциация происходит и при распределении между учениками

Предметные результаты

Предметное содержание углубленного курса определяется разделом ФГОС «Предметные результаты обучения по информатике».

- 1. Владение системой базовых знаний, отражающих вклад информатики в формирование современной научной картины мира.
- 2. Овладение понятием сложности алгоритма, знание основных алгоритмов обработки числовой и текстовой информации, алгоритмов поискаи сортировки.
- 3. Владение универсальным языком программирования высокого уровня (по выбору), представлениями о базовых типах данных и структурах данных; умением использовать основные управляющие конструкции.
- 4. Владение навыками и опытом разработки программ в выбранной среде программирования, включая тестирование и отладку программ; владение элементарными навыками формализации прикладной задачи и документирования программ.
- 5. Сформированность представлений о важнейших видах дискретных объектов и их простейших свойствах, алгоритмах анализа этих объектов, о кодировании и декодировании данных и причинах искажения данных при передаче; систематизация знаний, относящихся к математическим объектам информатики; умение строить математические объекты информатики, в том числе логические формулы.
- 6. Сформированность представлений об устройстве современных компьютеров, о тенденциях развития компьютерных технологий;
- о понятии «операционная система» и основных функциях операционных систем; об общих принципах разработки и функционирования интернет- приложений.
- 7. Сформированность представлений о компьютерных сетях и их роли в современном мире; знание базовых принципов организации и функционирования компьютерных сетей, норм информационной этики и права, принципов обеспечения информационной безопасности, способов и средств обеспечения надежного функционирования средств ИКТ.

- 8. Владение основными сведениями о базах данных, их структуре, средствах создания и работы с ними.
- 9. Владение построения ОПЫТОМ И использования компьютерно- математических моделей, проведения экспериментов и статистической обработки данных c помощью компьютера, интерпретации результатов, получаемых в ходе моделирования процессов; умение оценивать числовые моделируемых объектов и процессов, пользоваться базами данных и справочными системами.
- 10. Сформированность умения работать с библиотеками программ; наличие опыта использования компьютерных средств представления ианализа данных

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

Основные содержательные линии общеобразовательного курса базового уровня для старшей школы расширяют и углубляют следующиесодержательные линии курса информатики основной школы.

- 1. Линия информации и информационных процессов (определение информации, измерение информации, универсальность дискретного представления информации; процессы хранения, передачи и обработки информации в информационных системах; информационные основы процессов управления).
 - 2. Линия моделирования и формализации моделирование как метод познания; информационное моделирование: основные типы информационных моделей; исследование на компьютере информационных моделей из различных предметных областей).
 - 3. Линия алгоритмизации и программирования (понятие и свойства алгоритма, основы теории алгоритмов, способы описания алгоритмов, языки программирования высокого уровня, решение задач обработки данных средствами программирования).
 - 4. Линия информационных технологий (технологии работы с

текстовой и графической информацией; технологии хранения, поиска и сортировки данных; технологии обработки числовой информации с помощью электронных таблиц; мультимедийные технологии).

- 5. Линия компьютерных коммуникаций (информационные ресурсы глобальных сетей, организация и информационные услуги Интернета, основы сайтостроения).
- 6. Линия социальной информатики (информационные ресурсы общества, информационная культура, информационное право, информационная безопасность).

Центральными понятиями, вокруг которых выстраивается методическая система курса, являются «информационные процессы», «информационные системы», «информационные модели», «информационные технологии».

Тематическое планирование

10 класс

Тема	Всего	Теория	Практика
	часов		
Теоретические основы информатики	67		
Информатика и информация	2	2	
Измерение информации	5	2	3
Системы счисления	10	4	6
Кодирование	12	5	7
Информационные процессы	6	4	2
Логические основы обработки информации	18	6	12
Алгоритмы обработки информации	14	7	7
Компьютер	15		
Логические основы ЭВМ	4	2	2

История вычислительной техники	2	2	
Обработка чисел в компьютере	4	1	3
Персональный компьютер и его устройство	3	2	1
Программное обеспечение ПК	2	1	1
Информационные технологии	35		
Технологии обработки текстов	8	3	5
Технологии обработки изображений и звука	13	7	6
Технологии табличных вычислений	14	7	7
Компьютерные телекоммуникации	19		
Организация локальных компьютерных сетей	3	1	2
Глобальные компьютерные сети	6	3	3
Основы сайтостроения	10	4	6
итого	136		

Тематическое планирование

11 класс

Тема	Всего	Теория	Практика
	часов		
Информационные системы	15		
Основы системного подхода	5	3	2
Реляционные базы данных	10	4	6
Методы программирования	64		
Эволюция программирования	2	2	
Структурное программирования	47	20	27

Рекурсивные методы	5	2	3
программирования			
Объектно-ориентируемое	10	4	6
программирование			
Компьютерное моделирование	52		
Методика математического	2	2	
моделирования на компьютере			
Моделирование движения в поле силы	15	6	9
тяжести			
Моделирование распределения	12	5	7
температуры			
Компьютерное моделирование в	15	8	7
экономике и экологии			
Имитационное моделирование	8	5	3
Информационная деятельность	5		
человека			
Основы социальной информатики	2	1	1
Среда информационной деятельности	2	1	1
человека			
Примеры внедрения информации в	1	1	
деловую сферу			
итого	136		